Identification of Eye Diseases from Fundus Images Using Convolutional Neural Network with ResNet50 Architecture
Main Article Content
Abstract
This study aims to identify eye diseases from fundus images using ResNet50-based Convolutional Neural Network (CNN) architecture with a transfer learning approach. The dataset used comes from Kaggle with a total of 4217 images, covering four classes of eye diseases: Diabetic Retinopathy, Glaucoma, Cataract, and Normal. The process includes preprocessing with augmentation and normalization, transfer learning using a pre-trained ResNet50 model on imagesNet, and evaluation with a confusion matrix. The results show a testing accuracy of 87.91%, with the best performance in the Diabetic Retinopathy class and challenges in the Glaucoma class. Suggestions include balancing the dataset and further fine-tuning.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] M. S. Qulub and S. Agustin, “Indentifikasi Penyakit Mata Dengan Klasifikasi Citra Foto Fundus Mengunakan Convolutional Neural Network (CNN),” vol. 8, no. 5, pp. 11 034–11 039, 2024.
[2] Cahya and Suwanda, “Implementasi augmentasi data dalam klasifikasi penyakit mata menggunakan cnn,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 2, pp. 115–122, 2021.
[3] D. Juniati and A. E. Suwanda, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, vol. 5, no. 1, pp. 10–18, 2022.
[4] A. Verdy and S. Hartati, “High-accuracy eye disease classification using resnet-50 architecture,” International Journal of Medical Imaging, vol. 12, no. 2, pp. 55–63, 2024.
[5] Y. Huang, C. Xu, H. Xu, dan Z. Fang, “Identifying key components in ResNet-50 for diabetic retinopathy grading and model deployment,” arXiv preprint arXiv:2110.14160, 2021.
[6] J. Puchaicela-Lozano, A. Guerrero-Curieses, F. Rodriguez, dan J. I. Arribas, “Glaucoma detection on fundus images using Faster R-CNN and transfer learning,” Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2023, pp. 338–345.
[7] H. Abdel-Aty, M. Elhoseny, M. Zaki, dan M. Abd Elaziz, “Deep learning approach for fundus image classification using Inception-v3 and ResNet-50,” Frontiers in Physiology, vol. 14, art. no. 1126780, 2023.
[8] J. Deng, X. Wu, dan L. Zhang, “A revised ResNet-50 for diabetic retinopathy detection with improved generalization,” BMC Bioinformatics, vol. 24, no. 1, art. no. 153, 2023.
[9] R. Mishra, A. Srivastava, dan D. Sharma, “Detection of diabetic retinopathy using VGG19 and ResNet-50 models,” ResearchGate Preprint, 2024.
[10] H. Aly, M. F. Elkhateeb, dan A. M. Soliman, “Glaucoma detection using ensemble deep learning models and Grad-CAM visualization,” Arab Journal of Basic and Applied Sciences, vol. 31, no. 1, pp. 1–12, 2024.