Comparison of Machine Learning Algorithms for Liver Disease Classification
Main Article Content
Abstract
Liver disease is a serious medical condition often diagnosed late due to the lack of early symptoms and limited access to fast and affordable diagnostic technologies. This study utilized the Indian Liver Patient Dataset (ILPD) to develop a machine learning- based liver disease prediction model. The research process included data collection, preprocessing, model building, and performance comparison of various algorithms, such as Naive Bayes, K-Nearest Neighbor (KNN), Random Forest, Logistic Regression, Support Vector Machine (SVM), and Neural Network. The evaluation results revealed that Logistic Regression achieved the best performance with an accuracy of 72.00%, precision of 91.80%, and recall of 74.70%, offering a balance between accurate detection and minimal diagnostic errors. This study concludes that Logistic Regression is the most effective algorithm for liver disease prediction, supporting early detection and medical decision-making.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] E. Patimah, V. B. Haekal, and D. Sandya Prasvita, “Klasifikasi Penyakit Liver dengan Menggunakan Metode Decision Tree,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, vol. 2, no. 1, pp. 655–659, 2021.
[2] W. Wahyudi, “Implementasi Data Mining Untuk Klasifikasi Penyakit Liver Dengan C4.5 Adaboost,” J. Ilm. Tek. Inform. dan Komun., vol. 1, no. 3, pp. 71–76, 2021.
[3] S. Zulaikhah Hariyanti Rukmana, A. Aziz, and W. Harianto, “Optimasi Algoritma K-Nearest Neighbor (Knn) Dengan Normalisasi Dan Seleksi Fitur Untuk Klasifikasi Penyakit Liver,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 439– 445, 2022.
[4] I. Setiawati, A. P. Wibowo, and A. Hermawan, “Pendahuluan Tinjauan Pustaka Penelitian Sebelumnya Klasifikasi,” J. Inf. Syst. Manag., vol. 1, no. 1, pp. 13–17, 2019.
[5] V. Wulandari, W. J. Sari, Z. Alfian, L. Legito, and T. Arifianto, “Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 710–718, 2024.
[6] A. D. W. M. Sidik, I. Himawan Kusumah, A. Suryana, Edwinanto, M. Artiyasa, and A. Pradiftha Junfithrana, “Gambaran Umum Metode Klasifikasi Data Mining,” Fidel. J. Tek. Elektro, vol. 2, no. 2, pp. 34–38, 2020.
[7] N. Utami, K. Ahmad Baihaqi, E. E. Awal, D. Wahiddin, and F. I. Komputer, “Analisis Kinerja Algoritma Decision Tree Dan Random Forest Dalam Klasifikasi Penyakit Kardiovaskular,” Technol. Sci., vol. 6, no. 2, pp. 970–980, 2024.
[8] N. Maulida, N. Suarna, and W. Prihartono, “Analisis Ulasan Sentimen Aplikasi Mobile Jkn Dengan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1651–1658, 2024.
[9] N. Widiastuti, A. Hermawan, and D. Avianto, “Implementasi Metode Naïve Bayes Untuk Klasifikasi Data Blogger,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 985–994, 2023.
[10] J. I. Marzuki, K. Mataram, and N. T. Bar, “KOMPARASI AKURASI METODE CORRELATED NAIVE BAYES CLASSIFIER DAN NAIVE BAYES CLASSIFIER UNTUK DIAGNOSIS PENYAKIT DIABETES Hairani , Gibran
Satya Nugraha , Mokhammad Nurkholis Abdillah , Muhammad Innuddin InfoTekJar ( Jurnal Nasional Informatika dan Teknolog,” pp. 6–11.
[11] S. Zhang, “Challenges in KNN Classification,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4663–4675, 2022.
[12] N. T. Rahman, “Analisa Algoritma Decision Tree Dan Naïve Bayes Pada Pasien Penyakit Liver,” J. Fasilkom, vol. 10, no. 2, pp. 144–151, 2020.
[13] F. Kurniawan and Ivandari, “Komparasi Algoritma Data Mining Untuk Klasifikasi Penyakit Kanker Payudara,” IC-Tech, vol. XII, no. 1, pp. 1–8, 2017.
[14] Y. Handayani et al., “PERBANDINGAN ALGORITMA LOGISTIC REGRESSION DAN NAÏVE,” vol. 4307, no. May, pp. 1435–1440, 2025.
[15] S. Muawanah, U. Muzayanah, M. G. R. Pandin, M. D. S. Alam, and J. P. N.
Trisnaningtyas, “Stress and Coping Strategies of Madrasah’s Teachers on Applying Distance Learning During COVID-19 Pandemic in Indonesia,” Qubahan Acad. J., vol. 3, no. 4, pp. 206–218, 2023.
[16] E. Pusporani and S. Qomariyah, “323508-Klasifikasi-Pasien-Penderita-Penyakit- Li-496B23E3,” vol. 2, no. March, pp. 25–32, 2019.
[17] A. I. Kushartanto and R. T. Aldisa, “Data Mining Perbandingan Algoritma K- Nearest Neighbor dan Naïve Bayes dalam Prediksi Penerimaan Beasiswa,” J. Comput. Syst. Informatics, vol. 5, no. 1, pp. 196–207, 2023.
[18] R. Couronné, P. Probst, and A. L. Boulesteix, “Random forest versus logistic regression: A large-scale benchmark experiment,” BMC Bioinformatics, vol. 19, no. 1, pp. 1–14, 2018.
[19] M. Mardewi, “Prediksi Dini Liver Cirrhosis Untuk Kesehatan Hati Menggunakan Metode Machine Learning.,” Adv. Comput. Syst. Innov. J., vol. 1, no. 1, pp. 87–91, 2023.
[20] H. Hikmayanti Handayani, K. Ahmad Baihaqi, and U. Buana Perjuangan Karawang, “Implementasi Algoritma Logistic Regression Untuk Klasifikasi Penyakit Stroke,” Syntax J. Inform., vol. 12, no. 01, pp. 15–23, 2023.